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a b s t r a c t

Cities are characterized by high heterogeneity that results in varied microclimate effects. The current
study introduces a new bottomeup approach linking the urban Canyon Air Temperature (CAT) model
with spatially distributed inputs extracted from a GIS data-base and remote sensing products to predict
intra-urban temperature variability simultaneously for multiple locations in an urban environment. To
provide proof of concept, the model was applied for the city of Bat-Yam, Israel. Simulation shows a
maximum nighttime urban heat island (UHI) intensity of 2e2.25 �C, relative to a rural reference point,
during both summer and winter, with significant spatial variability related to the height-to-width ratio of
urban street canyons and to the surface land cover. The CAT simulation also highlighted the important
influence of the local wind regime on the development and persistence of the nocturnal UHI. We
conclude that linking CAT to a GIS data-base supports simulations at the city scale that reflect the local
intra-urban variability. The model can be used to investigate both macro and micro scale spatio-temporal
characteristics of the UHI in various urban development scenarios, which may be applied to generate
appropriate geographically-explicit mitigation and adaptation measures.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The link between cities and climate and its impact on human
comfort and building energy consumption is often evaluated using
sophisticated model simulations. These models may rely on
weather data obtained from the nearest station outside the city or
at the nearest airport. However, the data represent historical
climate rather than current or future conditions urban dwellers and
infrastructure will be exposed to. Furthermore, cities are charac-
terized by high heterogeneity that results in substantial intra-urban
variations of the microclimate. In other words, the weather at any
given locationwithin the urban areamay differ in ameaningful way
from that of the reference weather station.

The rapid urbanization of the past 50 years has changed the
physical urban environment, creating a more heterogeneous
landscape. Cities are known to be warmer than their rural sur-
roundings due to different thermal, radiative, moisture and aero-
dynamics characteristics of the built environment (Howard, 1820;
Oke, 1973, 1987), a phenomenon referred to as the urban heat
island (UHI). However, many studies show that the UHI is not
uniform in time or space: It is typically greatest on clear, windless
nights (Oke, 1981), and land cover heterogeneity has a significant
spatial effect on air temperature (Erell & Williamson, 2007;
Georgescu, Moustaoui, Mahalov, & Dudhia, 2012; Lookingbill,
2003; Loridan & Grimmond, 2012; Oke, 1981, 1982; Pielke, 2001;
Weaver & Avissar, 2001). A comprehensive review of UHI
research can be found in Arnfield (2003). The UHI does not only
impact the physical environment but further exacerbates thermal
stress through changing the energy balance both between the
surface and the atmosphere and between the human body and the
atmosphere.

Thermal stress has been associated with heat related vulnera-
bility (illnesses and death) (Guo et al., 2014) and epidemiological
studies have described a substantial increase in morbidity and
mortality in conjunction with heat episodes (Basu & Samet, 2002),
of which the 2003 heat wave in Europe is a well-known example
(Robine et al., 2008). Rosenthal, Kinney, and Metzger (2014)
demonstrated that, crucially, excess mortality was strongly
related to the physical properties of neighborhoods, so mitigating
the effects of future heat events requires a means of assessing
which neighborhoods are most likely to suffer from overheating.
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Although air temperature is but one factor contributing to thermal
stress, the evidence from numerous epidemiological studies in-
dicates that it is of sufficient importance for detailed study even in
the absence of contemporaneous data on other factors such as the
radiant exchange and humidity.

Numerous studies (Merbitz, Buttst€adt, Michael, Dott, &
Schneider, 2012; Rotem-Mindali, Michael, Helman, & Lensky,
2015; Saaroni, Ben-Dor, Bitan, & Potchter, 2000) have indicated the
importance of urban characteristics, such as land-use, building
density, vegetation or materials on the spatial pattern and
complexity of the UHI. For example, Saaroni et al. (2000) found
both positive and negative pockets of UHI within Tel-Aviv city
center. Chow and Roth (2006) found intra-urban UHI differences
>1 �C in Singapore and attributed it to enhanced anthropogenic
heat, green spaces and distance to the water front. Similar findings
were reported for Hong-Kong by Giridharan, Ganesan, and Lau
(2004; 2005). Hart and Sailor (2009) reported UHI intensity dif-
ferences of up to 10 �C within Portland between areas with high
canopy coverage and surrounding urban regions. Furthermore, they
found freeways and major roads experience UHI of up to 5 �C while
both the downtown and suburban areas experience temperature
anomalies of up to 2 �C.

Recent studies adopt a more nuanced approach, so that the
rural-urban dichotomy is replaced by a continuum of Local Climate
Zones (LCZs), classified according to built form, materials and land
cover (Stewart & Oke, 2012). Nevertheless, most mesoscale climate
models cannot account fully for this heterogeneity, resulting in a
contrast between the micro-scale, where the land cover and 3D
characteristics impact climate at street level, and the spatial scale at
which these models operate, which is typically a grid resolution of
500 m or more.

To obtain detailed microscale air temperature maps, researchers
have used high density direct point measurements, remote sensing,
or numerical modelling. Direct measurements are labor intensive,
require expensive instrumentation and high spatial density, as well
as a substantial logistical outlay to provide data over extended
periods. Regression and geo-statistical models produced from
direct measurements are used to provide interpolated data for lo-
cations where no physical measurements were recorded, but these
are often site-specific and still require a fairly dense measurement
network (Ivajn�si�c, Kaligari�c, & �Ziberna, 2014). Remote sensing does
not measure canopy layer air temperature directly, but rather 'skin'
(surface) temperature. Several studies have demonstrated good
correlation between the radiant temperature and canopy level air
temperature (Kloog, Chudnovsky, Koutrakis, & Schwartz, 2012,
2014; Pelta, Chudnovsky, & Schwartz, 2016), and the technique
has been applied in research on the effect of heat waves on mor-
tality (Laaidi et al., 2012). However, the linkage between surface-
and air temperature is extremely complex and the models may not
always predict air temperature from remotely sensed skin tem-
perature accurately. Moreover, the temporal resolution of satellites
may not be sufficient to produce the hourly or daily time series
needed to monitor and model the nocturnal UHI (Yang, Endreny, &
Nowak, 2013). Numerical models based on fluid dynamics such as
ENVI-met (Bruse& Fleer, 1998) have also been applied in numerous
studies, but they are best suited to scenario testing in short time-
scales and limited spatial extent. They require very detailed input
and substantial computational resources, so they are still limited to
research rather than planning applications.

Land surface models (LSM) such as the Noah LSM embedded
within theWeather Research and Forecasting model (WRF) and the
Town Energy Balance model (TEB) (Hamdi & Masson, 2008;
Masson, 2000) overcome some of the limitations mentioned
above, and have been applied in many major metropolitan regions
in different climate zones (Georgescu et al., 2012; Grimmond, 2007;
Oleson, Bonan, Feddema, Vertenstein, & Grimmond, 2008). LSMs
use thermo-dynamics to estimate the land surface energy fluxes
and their partitioning to latent and sensible heat. However, these
models are computationally intensive and represent the urban
surface in a parameterized fashion, including the urban canopy
state variables such as albedo and thermal properties of the built
environment and its 3D representation; i.e. they do not represent
buildings explicitly or their complex interactions such as long- and
short-wave radiation interactions and urban canyon wind chan-
neling effects. Moreover, because spatially distributed boundary
and initial conditions are not available for most urban areas (e.g.
radiation components), LSMs use mesoscale climate models'
output as input and apply a top-down approach in which heat flux
is determined by the difference between themodel's vertical layers.
These requirements limit the model grid size (>500 m), impairing
their ability to capture the high heterogeneity of land cover and 3D
parameters over small distances that characterizes some built
environments.

One such model, PASATH, (Spatial Air Temperature and Hu-
midity) is a physically based analytical model that can provide
spatially and temporally detailed microclimate maps (Yang et al.,
2013). Similar to WRF, PASATH does not provide a full spectrum
of height-to-width ratio, but rather a parameterization scheme for
4 urban canyon types: open space, low-, medium-, and high-
intensity development. While this simplification allows the
model to be less data-driven and less computationally intensive, it
limits its capability to represent the high heterogeneity of some
urban areas. Furthermore, the PASATH model uses additional sub-
models that require expert knowledge as well as elevation data,
and does not include an atmospheric stability correction. This limits
its accuracy in calculating aerodynamic resistance.

Over the last decade, GIS technology and 3D digital data have
become more widely accessible. These databases may be used to
produce temperature maps, usually grid-based maps in varying
resolutions, which represent the spatial variation in temperature
across the city (Jusuf & Hien, 2009). Ren, Ng, and Katzschner (2011)
provided a review of urban climate map studies and demonstrated
the need to incorporate climatic aspects into the urban planning,
development and decision making processes. They pointed out the
advantages of using a GIS-based platform for analyzing and visu-
alizing the urban thermal environments, and concluded that future
research should focus on spatial analysis and creating a simplified
method to provide spatially explicit climate information for urban
outdoor areas. Recently, Kastendeuch and Najjar (2015) developed
the LASER/F urban canopy model designed to work with high res-
olution 3D city geometry from a GIS database. However, the model
requires much processing power and time and cannot be used at a
city scale. Furthermore, the simulation uses a top-down approach
in which the boundary conditions are imposed at the top of each
urban canopy box.

The current study introduces a new bottomeup approach in
which the point-based urban Canyon Air Temperature (CAT) model
developed by Erell and Williamson (2006) is adapted to modelling
at a larger spatial scale by linking drawing inputs from a GIS
database and remote sensing products to predict air temperature
simultaneously formultiple locations in an urban environment. The
number of urban locations that can be modeled is not limited and
therefore a detailed andmore accurate representation of the spatial
variations of the urbanmicro-climate can be generated. CAToffers a
mechanism for capturing micro-climate variations resulting from
local surface characteristics and canyon geometry. Utilizing GIS to
create a detailed spatial urban canyonmorphology database allows
us to run detailed high resolution CAT simulations that take into
account the 3D characteristics and heterogeneity of the urban
landscape, and evaluate the spatio-temporal variability of micro-
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climate. Model outputs may be applied to the study of pedestrian
thermal comfort, to generate urbanized inputs for building energy
modelling and to assist in the development of future urban plans.

The objectives of the research reported here are: (a) to develop a
methodology for extracting 3D urban characteristics from GIS and
remote sensing images in a format suitable for microclimate
modelling, and (b) to provide proof-of-concept for a spatio-
temporal model that can simultaneously predict air temperature
for numerous locations in an urban environment and represent the
spatial variability of urban air temperature in a variety of weather
conditions.

2. Materials and methods

2.1. The CAT model

The Canyon Air Temperature (CAT) model (Erell & Williamson,
2006) was designed to predict site-specific micro-meteorological
conditions in an urban street canyon for extended periods, based on
data from a reference station exposed to the same meso-scale
weather. The required inputs for the CAT model are: a geometric
description of the street canyon and the nearby standard meteo-
rological station; the land cover, specifically the proportions of
vegetation and water around each site; and time-series of the
meteorological parameters measured at the weather stations,
typically at hourly intervals. The latter are used to describe and
characterize the constantly evolving meso-scale weather. A repre-
sentative meso-scale base temperature is then calculated based on
site-specific modifications to air temperature resulting from the
surface energy balance at the reference site. The base temperature
is in turn used to calculate the evolution of air temperature at the
urban canyon based on a similar energy balance calculation
reflecting the specific properties of this site. The procedure may be
carried out for all weather conditions and for time periods ranging
from a single month to a year or more.

CAT incorporates several parameterization schemes, based on
field studies reported by other researchers, which were subse-
quently tested within the framework of the current model. In
addition to expressions for estimating the effect of wind speed on
the convective surface heat transfer coefficient and the effect of
moisture availability on sensible heat flux, CAT also uses an
empirical correlation between the sol-air temperature of an
exposed reference surface and a coefficient of mixing between the
urban canopy and the mixed layer above roof height, which was
developed specifically for this purpose. The latter is estimated by a
simplified indicator based on the difference between air tempera-
ture at screen height and the surface temperature of the ground.

The CAT model was calibrated and tested using experimental
data obtained in an extended monitoring program carried out in
Adelaide, South Australia (Erell & Williamson, 2006). Comparison
of measured and predicted canyon air temperature showed good
agreement with a mean square error (MSE) < 1.5 �C and systematic
MSE <0.2. These results, along with analysis of the relationship to
several environmental indicators, support the claim that there are
no major unexplained factors missing from the model.

Further validation was carried out using data obtained from an
independent microclimate experiment carried out in Gothenburg,
Sweden (Erell, Eliasson, Grimmond, Offerle, & Williamson, 2009,
2010). This version of CAT employs a parametric scheme to esti-
mate moisture availability that is affected by advection from up-
wind source areas identified by wind direction and which also
varies with atmospheric stability. Estimates of the variability of
moisture due to advection from vegetation or bodies of water take
into account direction-dependent upwind surface cover and the
effect of atmospheric stability on the spatial extent of the source
area. The use of wedge-shaped polygons is an essential part of the
methodology, which simplifies calculation. Unlike conventional
weather models, which solve a complete set of equations governing
the transfer of energy, mass and momentum from each grid cell to
all adjacent ones, the method illustrated here adopts a simplified
source-area model that assigns a wedge-shaped source area up-
wind of each grid point that is updated at each time step. The size of
the source area is estimated based on Schmid and Oke (1990), with
values for advection of moisture parameterized following
Grimmond and Oke (2002). Similar to the Adelaide study, the
Williamson degree of confirmation (Williamson, 1995) was in the
range 0.3e0.5, indicating a substantial improvement over the use of
raw data from the weather station. The model is thus considered
capable of reproducing the street canyon temperature evolution
and the nocturnal UHI for various climatic conditions and physical
surroundings.
2.2. Study area

The study focuses on the city of Bat-Yam, Israel (Fig. 1). Bat-Yam
is a commuter community south of Tel Aviv, in the core of Israel's
coastal metropolitan area. It covers an area of 8.28 km2 and has a
total population of about 160,000. The city has a Mediterranean
climate (K€oppen Csa) with average annual precipitation of about
500 mm and mean daily temperature of 25.3 �C in summer (July)
and 12.2 �C in winter (January) (Bitan & Rubin, 1994). The selection
of Bat-Yam was due to an ongoing project for developing a water
sensitive city and incorporating vegetation along storm-water
runoff pathways in existing urban fabric, with the additional aim
of improving the microclimate.
2.3. Input data

Organization of input data was based on a geodatabase schema
that allows linking geographical datasets spatially in order to
support overlay analysis. The geodatabase also supports topological
rules which maintain the integrity of the data and assist in locating
errors. The spatial projection was defined as the Israel TM Grid.
Input variables for the CAT model include publicly available climate
data frommeteorological stations in TMY format, 3D characteristics
of the city (i.e. the urban street canyons), and the proportion of
vegetation and water in the source areas for moisture.

To derive these variables, the following datasets were obtained
for the study area:

1. Two GIS vector datasets (source: Israel National Mapping
Agency) - one of street center-lines and the other of building
footprints, represented as polygons. Building data included base
elevation and building heights. These data were used to calcu-
late average building height and street width.

2. Remotely-sensed data: To map land cover and extract the
location and fractions of vegetation and water bodies required
for simulation of moisture availability, freely available Google
Earth images were combined with WorldView-2 (WV2) images
acquired on June 27, 2012 (Fig. 2). The WV2 data has 2m spatial
resolution with 8 bands e Coastal (400e450 nm), Blue
(450e510 nm), Green (510e580 nm), Yellow (585e625 nm), Red
(630e690 nm), Red Edge (705e745 nm), Near-IR1 (NIR1;
770e895 nm), and Near-IR2 (NIR2; 860e1040 nm).

3. Meteorological data: A TMY file for Bet Dagan, the nearest Israel
Meteorological Service weather station with a full and detailed
data set, was used to provide reference conditions. The station,
about 7 km from the center of Bat Yam, represents climate
conditions in the central part of Israel's coastal plain.



Fig. 1. Study area: location and aerial view of the city of Bat-Yam.

Fig. 2. Images used to extract land cover. Left: WorldView-2 image shown as false colors composites (R ¼ NIR2, G ¼ Red, B ¼ Green). Right: The two Google Earth images used in the
study. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.4. Preparation of the urban data-base for the CAT simulations

Using data from these sources, two approaches were evaluated
for assembling an input file suitable for processing in CAT: simu-
lation of each individual street segment, in which the mid-point of
every street vector was defined as a simulation point; and a grid
approach, in which grid cells were populated with the average 3D
characteristics of the streets within the cell boundaries. Exploratory
data analysis revealed several limitations of the point-based
approach, which are the result of the process through which the
GIS data-base was compiled.

a. First, what appeared through visual inspection of the city map
and satellite image to be continuous streets were in fact some-
times coded as multiple segments. Secondly, the direction of
digitization was inconsistent. For example: north-south streets
were sometimes described as being south-north, giving a
different value for the azimuth. Finally, streets with traffic
islands and separator strips were sometimes coded as adjacent
but separate segments. These 'technical' difficulties may be
specific to the data-base used in this study, but are in all likeli-
hood typical of many other such GIS files.
Fig. 3. Illustration of the method used to generate the wedges developed for extracting lan
fractions for each sector are estimated from the database and used by CAT to parameterize
b. Second, point-based spatial information is less effective as a
visualization tool that planners, developers and decisionmakers
can use.

Thus, a grid-cell approach was adopted. Following Mizuno,
Nakamura, Murakami, and Yamamoto (1990) who found that
the effect of local microclimate ranged from 50 to 200 m, and
because CAT is a 2.5-dimensional model designed to work for an
urban canyon at the street scale, a 150 m grid cell size was used.
The drawback of the grid approach lies in the fact that each cell
must first be classified as being either built-up or vegetated. The
former type is represented by its averaged street canyon param-
eters, not accounting for some of the smaller scale features. The
second type is represented by CAT as open space. Although the
grid size specified was fairly small, some cells were nevertheless
of a hybrid nature and consisted partly of streets and partly of
open space.

The datawere exported to an Excel spreadsheet and reorganized
to remove unnecessary columns. To link them to the CAT model, a
FORTRAN code was written that converts the data from the GIS
format (where attributes for each point are specified in a line) to an
input format readable by CAT (attributes arranged in a column).
d surface cover in source areas for moisture at each grid point. Vegetation and water
moisture availability according to wind direction.
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The method developed consists of the following steps:
2.4.1. Classifying vegetation and water land-cover
Vegetation and water mapping is required to calculate and ac-

count for local and advected moisture at a given point in time and
space. Using the maximum likelihood classifier in ArcGIS 10.3
software package (ESRI, 1984) a Google Earth image of the pilot
study area of Bat-Yam, Israel (Figs. 1 and 2) was classified. The
maximum likelihood classifier is a non-supervised classifier (i.e. e
the user does not select samples to represent land cover types), so
initial classification was done by predefining the number of classes
to 50. At the second stage, vector information of buildings and
roads was incorporated to merge the initial 50 classes into 5 land
cover types: buildings, open soil, impervious surfaces (roads,
parking lots etc.), vegetation, and water.

As can be seen from Fig. 1, one limitation of using satellite im-
ages in urban areas is that shadows cast by buildings or vegetation
hinder identification of the underlying surface cover. One option of
addressing this limitation is to use a kernel window to incorporate
shadows into their adjacent land cover using a statistical filter (e.g.
3 � 3 majority). In our case however, shadows accounted for less
than 1% of the land cover, so the shaded area was ignored in the
calculations. In cities with a higher shadow fraction, images taken
as close as possible to the zenith may be used to minimize the
shadowed areas where it may be very difficult to deduce the actual
surface cover.

Another limitation of using Google Earth images is their limited
spectral resolution, i.e. e only 3 bands in the visible range. This is
especially important for vegetation because its most distinct
spectral feature is its high reflectance in the near infrared (NIR)
wavelengths. Thus, to enhance and improve vegetation mapping,
the Normalized Difference Vegetation Index (NDVI) was calculated
using the red and NIR bands of WV2:

(NIR2- Red)/(NIR2 þ Red)

The NDVI has been shown to have high correlation with plant
biomass, leaf chlorophyll levels, leaf area index values and photo-
synthetically active radiation absorbed by the canopy; thus it is a
measure of vegetation greenness/health (Lillesand, Kiefer, &
Chipman, 2007). A threshold of NDVI>0.17 was used to classify
green vegetation pixels. The final land cover map was generated by
overlaying the pixels identified as vegetation by WV2 NDVI on the
Table 1
CAT input describing the urban canyon site.

Characteristics of urban canyon site Source

Mean surface albedo ground Remo
Mean surface albedo walls Assum
Canyon width, in meters GIS
Height of walls, in meters GIS
Orientation of street canyon wall GIS
Heat storage coefficients (ground & walls) OHM

(Grim

Mixing ratio for atmos. conditions Erell e

LUMPS Beta value Erell &
Plant and water cover (%) GIS/Re
Google Earth image classification.
To systematically extract the percentage of vegetation andwater

around each point, taking into account the effect of orientation, we
developed an automated GIS tool that constructs radial polygons
around points based on defined azimuths and distances. Following
CAT input requirements, the tool builds 32 wedges around a circle
of 100 m radius surrounding each input point at distances of 500
and 1000 m (Fig. 3).

Using the Zonal Statistics method in ArcGIS (ESRI, 1984), the
percentage of land cover (i.e. vegetation and water) in each wedge
was calculated and assigned to each point. Zonal functions operate
by analyzing the values of a group of cells in a raster based on a zone
(area) defined by an overlaying dataset. The zones can be either
polygons or groups of cells within another raster dataset (Lloyd,
2010). In the current study, the zones are defined by the output
wedges. It is important to note that we used a single image to
represent vegetation cover. In many cities urban vegetation is irri-
gated; thus it maintains its greenness regardless of climate. How-
ever, some vegetation, especially in open spaces and natural
vegetation along the urban edges may be seasonal. In addition,
evapotranspiration changes according to water availability and at-
mospheric demand, so vegetation impact might need to be
adjusted seasonally.

2.4.2. Extracting 3D street variables
One of the most important characteristics which determine UHI

intensity is the street geometry - i.e., height-to-width ratio and
orientation (Oke, 1981, 1982). ArcGIS 10.3 was used to estimate the
street width and mean buildings height along each street. Data
were then averaged in a 150 � 150 m grid (see section 2.4).

2.4.2.1. Street width. Using the buildings footprint layer as input, a
1 m resolution raster of the shortest distance between each two
buildings was generated. Following, a buffer of 2 m along the road
centerline layer was created. To estimate the street width we used
the Zonal Statistics method in ArcGIS (ESRI, 1984), where the
centerline buffers were defined as zones, and the input raster was
the shortest distance raster. The result of this procedure is that each
street is represented by the minimum distance between buildings
along its sides. Because the minimum distance represents only one
side of the street (i.e. the closest building to the street center), the
final width was determined bymultiplying the value for each street
by a factor of 2.
Value used/Range

te sensing (Liang, 2000) 0.08e0.14
ption/literature 0.4

0e220
0e53
0e360

model
mond & Oke, 2002)

Ground (A1): 0.61
Ground (A2): 0.41
Ground (A3): -28.0
Wall 1,2 (A1): 0.83
Wall 1,2 (A2): 0.43
Wall 1,2 (A3): -54.0

t al., 2009; 2010 Inversion: 0.894
Stable: 0.935
Neutral: 0.948
Turbulent: 0.973
Super stable: 0.809

Williamson, 2006 5
mote sensing 1e1



Fig. 4. The spatial pattern of H/W (left) and hot-spot analysis (right). The black square represents the 7 � 7 matrix used to run CAT.
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2.4.2.2. Building height. The building footprint layer includes the
height for each building. To assign the mean height for a street a
new raster was generated, where the value of each pixel is the
height of the building closest to it. For convenience and accuracy
we used a grid size of 1 � 1m. We then repeated the procedure
elaborated above using the Zonal Statistics and the streets buffer,
and assigned to each street segment the mean value of the build-
ings heights within its buffer. In addition to canyon geometry, we
also computed the street orientation (azimuth).

The radiative and conductive properties of building materials
also affect heating/cooling (Grimmond, 2007). Such data are not
available in many cities, and field work at such a scale is not
feasible. Thus, the radiative and conductive properties were esti-
mated from previous work and the literature, and assumed to be
constant throughout the city.

2.4.3. Albedo
Ground albedo is a key forcing parameter on the surface energy

balance and hence the UHI, so it is important to account for its
spatial variability, especially in urban areas where surface land
cover varies greatly over short distances. Since CAT requires inde-
pendent values of the ground albedo for each 150 m grid cell, the
buildings footprint was masked and the average albedo was esti-
mated using the empirical formula previously developed for the
Landsat TM/ETMþ sensor (Liang, 2000):

avis ¼ 0:443b2þ 0:317b3þ 0:240b5

where b2, b3, b5 correspond to the reflectance in WV2 spectral
bands 2 (0.45e0.51 mm), 3 (0.51e0.58 mm) and 5 (0.63e0.69 mm),
respectively.

The average albedo values of the ground surface of the 150 m
grid cells in the test area range from 0.08 to 0.14, although indi-
vidual pixels varied from 0.02 to 0.34. Table 1 summarizes the CAT
inputs describing an urban site, and the methods used to estimate
them.

CAT input also includes albedo of each of the walls comprising
the street canyon. Because this cannot be estimated by remote
sensing, the value for wall albedo was assessed manually. A visit to
the study area and visual analysis of Google Earth images show
mostwalls are of rough, off-white/beige plaster, so in the absence of
more detailed data, a fixed value of albedo ¼ 0.4 was used. The
ground surface near the meteorological site is mostly bare soil and
was assigned a fixed albedo of 0.3.
2.4.4. Urban canyon vs. open space
In CAT, the heat storage coefficients values are described by the

objective hysteresis model (OHM) by Grimmond and Oke (2002).
These coefficients are different for an urban canyon and for an open
space within the city. To determine whether a grid cell is an urban
canyon or an open space and assign correct values from the OHM,
the land cover frequency within each 150m grid cell was calculated
using the zonal statistics tool in ArcGIS (ESRI, 1984). Because CAT
focuses on canyon 3D geometry, and following the USA National
Land Cover Data (NLCD) guidelines (Homer et al., 2015), each grid
cell with a built fraction <0.2 was classified as open space. Open
space grid cells, which CAT models as very shallow street canyons,



Fig. 5. Land cover classification and typical types of street morphology based on the local climate zones classification (Stewart & Oke, 2012).
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were assigned a 'building' height of 3 m and 'canyon' width of
150 m, corresponding to a sky view factor of approximately 0.99.
We assume that even in an open space there are some features such
as topography, trees and possibly some man made features; thus
the sky view factor is not 1.0.

3. Results

3.1. Urban 3D geometry

Fig. 4 shows the spatial pattern of H/W for the study area and its
subsequent hot/cold cluster analysis using the Getis-Ord Gi* sta-
tistic (Getis & Ord, 1996; Ord & Getis, 1995). The Gi* statistic is a
method for analyzing spatial clustering in data by identifying sta-
tistically significant hot and cold spots. Positive values of Gi* indi-
cate a cluster of high data values, while negative values of Gi*
indicate a cluster of low data values. The degree of clustering and its
statistical significance is represented using the Gi_bin output in
Fig. 4. Features in the ± 3 bins represent statistical significance with
a 99% confidence level; features in the ± 2 bins represent a 95%
confidence level; features in the ± 1 bins represent a 90% confi-
dence level; and the clustering for features in bin 0 is not statisti-
cally significant. Results indicate that the city average H/W ratio is
approximately 0.5, ranging from 0 to 1.96. Higher H/W is observed
on the north-west of the city, where the main land use is small
residential and retail buildings 3-5 stories tall. The lower H/W
values correspond to open spaces and residential buildings 1-3
stories tall; the higher values on the south-east corner of the city
correspond to the city's light-industry area. These results demon-
strate the methodology's ability to capture the spatial variability of
Bat-Yam's urban geometry.

The cluster analysis (Fig. 4, right) used to identify areas that
potentially lead to more intense UHIs suggests that two main hot-
spots exist, i.e.e a grid cell with high H/W surrounded by other grid
cells with high H/W values. The cold cluster corresponds to the
beach strip and open space (see Fig. 1). To provide a proof of
concept for our methodology and demonstrate the importance of
the fine scale spatial variability of the urban morphology, a sub-
sample of the whole city that maximizes spatial variability was
selected for further analysis (Fig. 4). The sub-sample, comprising a
7 � 7 matrix, was chosen because it includes a wide range of H/W
ratio as well as a hot-spot of H/W where we expect a larger UHI to
form.

3.2. Land cover and local climate zones

Fig. 5 shows the land cover map and the typical streets for the
7 � 7 sample area, classified according to the local climate zones



Fig. 6. Hourly UHI intensity and variability across all 49 grid-cells for January 15e16 (top) and August 15e16 (bottom). The gray box represents the second and third quartiles and
the horizontal black line represents the median. Whiskers indicate highs and lows for each hour.
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developed by Stewart and Oke (2012). The area's surface cover
consists of 26% buildings, 21% impervious (roads) and 52% pervious
(19% bare soil and 33% vegetation). The scarcity of long-term data
on local climate spatial variability within cities (van Hove et al.,
2015) and the existence of multiple local climate zones at this
small scale further demonstrates the importance of predicting the
spatial variability of the UHI within the city.
3.3. Urban heat island

The urban-rural temperature difference (DTu-r) was simulated
by CAT for each grid-cell. The model was run for all grid-cells
simultaneously, using each cell's unique parameters as extracted
from the GIS and remote sensing data (see Table 1). Fig. 6 shows the
diurnal development of DTu-r across all 49 grid cells for a clear day
in winter and summer. In winter, a distinct UHI is observed at night
time, with a lower intensity during daytime. During nighttime
hours urban-rural temperature differences increase, as does the
spatial variability between grid cells: From 20:00 LST to 07:00 LST
the next day, a stable UHI is observed, ranging from 0.75 �C for open
urban spaces to over 3.5 �C for grid cells with high H/W (compact
mid-rise residential). Overall, for the winter day chosen, the UHI
displays the expected pattern, and reflects low air temperatures at
the rural weather station at night (dry bulb temperature ranges
3e8 �C between Jan 15, 22:00 and Jan 16, 08:00).

During daytime, urban-rural temperature differences are much
lower, with a mean intensity of less than 0.5 �C. Intra-urban
variability is much smaller and DTu-r has a distinct positive
skewness, with a small number of cells displaying a substantial
temperature difference while most others were characterized by a
much more modest one. This is even more obvious in summer-
time where during the entire diurnal cycle a positive skewness is
observed.

On average, considering all grid cells, a maximum average
temperature difference of ~2.35 �C was observed in both seasons.
Similar temperature differences were reported by Saaroni et al.
(2000) for the neighboring city of Tel-Aviv. Following Kaplan,
Georgescu, Alfasi, and Kloog (2015), the relative day-time cooling
(or, damping of warming expected with urban expansion) was
attributed to changes in energy partitioning. In summer, early
evening hours are characterized by little or no wind, allowing the
UHI to develop until it peaks at 22:00 LST. Goldreich (1982) found a
similar temporal pattern for Tel-Aviv. After 22:00 the wind picks up
again as the land breeze starts, acting as a cooling agent (Heisler,



Fig. 7. Spatial and temporal development of the temperature field (�C) on a winter day (Jan 15, 10am to Jan 16, 10am).
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Ellis, Nowak, & Yesilonis, 2015; Saaroni et al., 2000), causing the
UHI to dissipate rapidly.

One of the advantages of coupling CAT with GIS is the ability to
represent and visualize the results to include the spatial domain
and highlight both the spatial variability and the effect of the
different H/W of each grid cell. Fig. 7 shows maps of the spatio-
temporal development DTu-r at two-hour intervals for a typical
clear-sky winter day. Similarly, Fig. 8 shows the same for summer
[See supplementary materials for animated versions of these fig-
ures]. In both winter and summer the UHI intensity reflects the
street canyon aspect ratio, as illustrated in Fig. 4. In winter, a
maximum nighttime UHI of up to 3.75 �C is predicted in the dense
residential areas (see Fig. 5 for location of the different land use
types). The low- and mid-rise area (light industry) shows a lower
DTu-r of up to 2.45 �C. At peak intensity (22:00e23:00), the mini-
mum predicted DTu-r is 0.77 �C at the open space/park in the south



Fig. 8. Spatial and temporal development of the temperature field (�C) on a summer day (Aug 15, 10am to Aug 16, 10am).
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west corner of the domain. These results are in line with van Hove
et al. (2015) and Ivajn�si�c et al. (2014) who found that intra-urban
variability in air temperature is significantly related to land cover
fractions andmean building height. The lowest temperature within
the city is observed in the park at the center of our domain with
DTu-r ¼ 0.86, similar to Shashua-Bar and Hoffman (2000) who
showed that urban parks may have a cooling effect of 1.5 �Ce3 �C
compared to the adjacent built environment.

From Fig. 7 we note that during winter all grid cells, including
open space, show a relative temperature elevation in comparison
with the reference site throughout the night. In summer (Fig. 8), the
simulation predicts less spatial variability with a maximum tem-
perature elevation of 3.3 �C. Saaroni et al. (2000) reported similar
UHI values for Tel-Aviv, where the UHI intensity can reach up to 6 �C
during nighttime. It is important to note that the same grid-cell
shows maximum temperature anomalies for both summer and
winter. This grid cell is classified as 'residential mid-rise' with H/
W ¼ 1.08, and is located in the center of the hot-spot cluster, i.e.
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surrounded by other grid cells which also have relatively high
values of the canyon aspect ratio. For both times of year, daytime
hours show no significant temperature anomalies.

4. Discussion

Current top-down methods are susceptible to an inherent error
due to the inability to represent the full spatial variability of local,
small-scale surface characteristics and canyon geometry (which are
therefore typically represented by a mean or parameterization
scheme); In contrast, the approach proposed here provides a
detailed representation of the variability of the surface cover and
spatial geometry. The number of locations that can be modeled is
not limited and therefore can provide a more accurate represen-
tation of the spatial micro-climatic variations. This comes at a cost,
however, due to the simplifying assumption in CATof a horizontally
homogenous boundary layer above the reference site and the urban
area being studied. The method can therefore be applied only
where there are no overriding mesoscale phenomena, such as the
effect of large variations in topography, which might drown the
urban signal.

One limitation of our grid based approach is that it assigns each
grid average 3D values. This can be overcome to some extent by
increasing the spatial resolution, i.e. e using a smaller grid cell size.
Although this increases the computation cost of the model, the
primary limitation is actually the size of the urban elements that
comprise the study area. Each grid cell must, for example,
encompass at least the width of the buildings and the street canyon
they define, as well as a canyon length that is sufficiently long so
that end effects may be ignored.

In addition, using a grid approach introduces an inherent
problem of the location of the origin. If the size of the grid cell is
sufficiently small, then the origin point of the grid should be of no
importance. However, minor inconsistencies may result if, for
example, a small park is completely represented by one grid cell or
divided among two adjacent cells that are primarily built-up.

The visualization of urban temperature variability is an impor-
tant benefit for decision makers and urban planners. Coupling the
CAT model with GIS enables us to generate snapshots illustrating
the urban influence on the spatio-temporal variability of air tem-
perature, as well as to generate 'urbanized' TMYs. The latter can be
utilized for building simulation purposes, as well as for urban
planning requiring evaluation and comparison of different sce-
narios (such as location, size and distribution of green open spaces).
Incorporating climatological information in city design can provide
a better living and working environment for inhabitants
(Georgescu, Morefield, Bierwagen, & Weaver, 2014; Kaplan et al.,
2015; Roth, 2007). By using the bottom-up approach, we demon-
strated that it is relatively easy to generate a climate map that can
be easily interpreted by planners and/or other stakeholders. In
general, the methodology presented here to extract 3D parameters
can be used with other micro- and meso-scale climate models that
require an input of the street geometry and land cover.

5. Conclusion and implications for urban planning

The changing face of cities that often accompanies rapid ur-
banization and the potential impact of climate change pose chal-
lenges that urban planners must overcome. Tools are required to
assess the effect of increased spatial variability of land use and land
cover, and the effect of mitigation/adaptation measures to reduce
the effects of the UHI (van Hove et al., 2015) in different scenarios.
We have demonstrated how GIS-based, spatially distributed urban
canyon 3D geometry and land cover information obtained from
remote sensing can be linked with an urban canyon model to
generate a detailed map of the spatial and temporal intra-urban
variability of air temperatures. Applying the model for the city of
Bat-Yam, Israel, a mean nighttime UHI of 2 �Ce2.25 �C was pre-
dicted during both summer and winter, with significant spatial
variability attributed to differences in the height-to-width ratio and
the variability of land use and surface cover. The CAT computer
simulation also illustrated the importance of the local wind regime
on the nocturnal UHI.

We conclude that the application of the CAT model supports
simulations at the city scale that reflect intra-urban variability.
Identification of the spatio-temporal variability of the UHI in a city
can lead to a better understanding of its causes as well as its im-
plications for thermal stress and to plan appropriate geographically
specific mitigation and adaptation measures. These may have
further relevance for environmental implications in a time of global
warming, especially in a warm region such as the Mediterranean
basin.

Supplementary video related to this article can be found at
http://dx.doi.org/10.1016/j.apgeog.2016.09.015.
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